39 research outputs found

    Incorporating spatial information for microaneurysm detection in retinal images

    Get PDF
    The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working population worldwide. This paper introduces a novel algorithm that combines information from spatial views of the retina for the purpose of MA detection. Most published research in the literature has addressed the problem of detecting MAs from single retinal images. This work proposes the incorporation of information from two spatial views during the detection process. The algorithm is evaluated using 160 images from 40 patients seen as part of a UK diabetic eye screening programme which contained 207 MAs. An improvement in performance compared to detection from an algorithm that relies on a single image is shown as an increase of 2% ROC score, hence demonstrating the potential of this method

    Lifestyle changes and glycemic control in type 1 diabetes mellitus: A trial protocol with factorial design approach

    Get PDF
    Background: Type 1 diabetes (T1D) has been increasing globally over the past three decades. Self-monitoring of blood glucose is a challenge in both developed as well as developing countries. Self-management guidelines include maintaining logbooks for blood glucose, physical activity, and dietary intake that affect glycated hemoglobin (HbA1c) and a multitude of life-threatening acute complications. Innovative, cost-effective interventions along with beneficial lifestyle modifications can improve home-based self-monitoring of blood glucose in T1D patients. The overall objective of this study is to evaluate the relationship between maintaining log books for blood glucose levels, reinforcement by e-messages, and/or daily step count and changes in HbA1c.Methods/design: A randomized controlled trial will enroll participants aged 15 years and above in four groups. Each group of 30 participants will be working with a newly designed standard log book for documenting their blood glucose. The first group will be entirely on routine clinical care, the second group will be on routine care and will receive an additional e-device for recording step count (fit bit), the third group will receive routine care and daily motivational e-messages to maintain the log book, and the fourth group along with routine care will receive an e-device for measuring step count (fit bit) and e-messages about maintaining the log book. Patients will be enrolled from pediatric and endocrine clinics of a tertiary care hospital in Karachi. All groups will be followed up for a period of 6 months to evaluate outcomes. Log book data will be obtained every 3 months electronically or during a patient\u27s clinic visit. HbA1c as a main outcome will be measured at baseline and will be evaluated twice every 3 months. A baseline questionnaire will determine the socio-demographic, nutritional, and physical activity profile of patients. Clinical information for T1D and other co-morbidities for age of onset, duration, complications, hospitalizations, habits for managing T1D, and other lifestyle characteristics will be ascertained. Behavioral modifications for maintaining daily log books as a routine, following e-messages alone, fit bit alone, or e-messages plus using fit bit will be assessed for changes in HbA1c using a generalized estimated equation.Discussion: The proposed interventions will help identify whether maintaining log books for blood glucose, motivational e-messages, and/or daily step count will reduce HbA1c levels

    Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodology

    Get PDF
    Three-dimensional printed plastic products developed through fused deposition modeling (FDM) endure long-term loading in most of the applications. The tensile creep behavior of such products is one of the imperative benchmarks to ensure dimensional stability under cyclic and dynamic loads. This research dealt with the optimization of the tensile creep behavior of 3D printed parts produced through fused deposition modeling (FDM) using polylactic acid (PLA) material. The geometry of creep test specimens follows the American Society for Testing and Materials (ASTM D2990) standards. Three-dimensional printing is performed on an open-source MakerBot desktop 3D printer. The Response Surface Methodology (RSM) is employed to predict the creep rate and rupture time by undertaking the layer height, infill percentage, and infill pattern type (linear, hexagonal, and diamond) as input process parameters. A total of 39 experimental runs were planned by means of a categorical central composite design. The analysis of variance (ANOVA) results revealed that the most influencing factors for creep rate were layer height, infill percentage, and infill patterns, whereas, for rupture time, infill pattern was found significant. The optimized levels obtained for both responses for hexagonal pattern were 0.1 mm layer height and 100% infill percentage. Some verification tests were performed to evaluate the effectiveness of the adopted RSM technique. The implemented research is believed to be a comprehensive guide for the additive manufacturing users to determine the optimum process parameters of FDM which influence the product creep rate and rupture time

    Metrology Process to Produce High-Value Components and Reduce Waste for the Fourth Industrial Revolution

    Get PDF
    Conventionally, a manufactured product undergoes a quality control process. The quality control department mostly ensures that the dimensions of the manufactured products are within the desired range, i.e., the product either satisfies the defined conformity range or is rejected. Failing to satisfy the conformity range increases the manufacturing cost and harms the production rate and the environment. Conventional quality control departments take samples from the given batch after the manufacturing process. This, in turn, has two consequences, i.e., low-quality components being delivered to the customer and input energy being wasted in the rejected components. The aim of this paper is to create a high-precision measuring (metrology)-based system that measures the dimension of an object in real time during the machining process. This is accomplished by integrating a vision-based system with image processing techniques in the manufacturing process. Experiments were planned using an experimental design which included different lightning conditions, camera locations, and revolutions per minute (rpm) values. Using the proposed technique, submillimeter dimensional accuracy was achieved at all the measured points of the component in real time. Manual validation and statistical analysis were performed to check the validity of the system

    Multidisciplinary Product Decomposition and Analysis Based on Design Structure Matrix Modeling

    No full text

    Multidisciplinary product decomposition and analysis based on design structure matrix (DSM) modelling

    No full text
    corecore